
Scalar:

Vector:

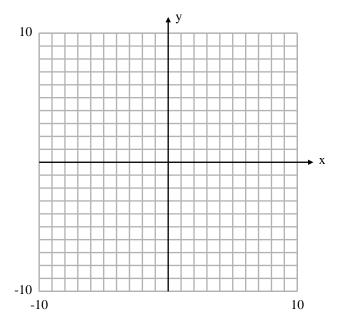
Two vectors are equal

Definition Magnitude or Length

The **magnitude** or **length** of the vector $\mathbf{v} = \overrightarrow{PQ}$ determined by $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$|\mathbf{v}| = \sqrt{v_1^2 + v_2^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

1. Let be \vec{u} the vector represented by the directed line segment \overrightarrow{RS} and \vec{v} be the vector represented by the directed line segment \overrightarrow{OP} . Prove that $\vec{u} = \vec{v}$. R = (-2, -1), S = (2, 4), O = (-3, -1), P = (1, 4)


Definition Component Form of a Vector

If v is a vector in the plane equal to the vector with initial point (0, 0) and terminal point (v_1, v_2) , then the component form of v is

$$\mathbf{v}=\langle v_1,v_2\rangle.$$

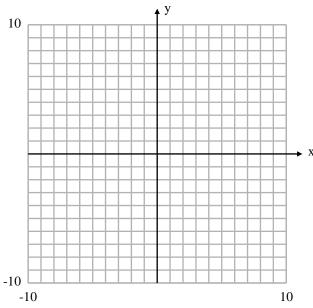
2. Let P = (-2, 2), and S = (2, -8). Find the component form and magnitude of the vector.

 \overrightarrow{PS}

Vectors in the Plane

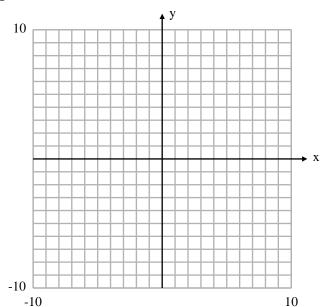
Definition Vector Addition and Scalar Multiplication

Let $\mathbf{u} = \langle u_1, u_2 \rangle$ and $\mathbf{v} = \langle v_1, v_2 \rangle$ be vectors and k a real number (scalar). Then the sum of vectors \mathbf{u} and \mathbf{v} is the vector

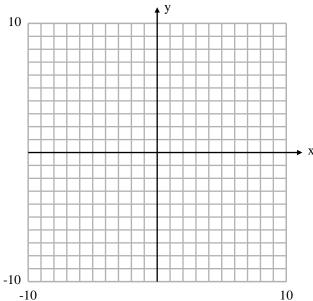

$$\mathbf{u} + \mathbf{v} = \langle u_1, u_2 \rangle + \langle v_1, v_2 \rangle = \langle u_1 + v_1, u_2 + v_2 \rangle.$$

The product of the scalar k and the vector u is

$$k\mathbf{u} = k\langle u_1, u_2 \rangle = \langle ku_1, ku_2 \rangle.$$


3. Let P = (-2, 2), Q = (3, 4), and S = (2, -8). Find the component form and magnitude of the vector.

$$\overrightarrow{PS} - 3\overrightarrow{PQ}$$


4. Let $\vec{u} = \langle -4, -1 \rangle$ and $\vec{v} = \langle 2, -5 \rangle$. Find the component form of the vector.

$$3\vec{v} + \vec{u}$$

5. Let $\vec{u} = \langle -1, 3 \rangle$ and $\vec{w} = \langle 2, -5 \rangle$. Find the component form of the vector.

 $2\vec{u} - \vec{w}$

6. Find a unit vector in the direction of the following vector.

$$\vec{w} = \langle 3, -7 \rangle$$

$$\vec{u} = 3\hat{i} - 5\hat{j}$$

- 7. Find the unit vector in the direction of the following vector in
 - a. component form
 - b. standard unit form

$$\vec{u} = \langle 3, -4 \rangle$$