Objectives
Identify linear functions and linear equations.
Graph linear functions that represent real-world situations and give their domain and range.

Vocabulary
linear function
linear equation

Why learn this?
Linear functions can describe many real-world situations, such as distances traveled at a constant speed.

Most people believe that there is no speed limit on the German autobahn. However, many stretches have a speed limit of 120 km/h. If a car travels continuously at this speed, \(y = 120x \) gives the number of kilometers \(y \) that the car would travel in \(x \) hours. Solutions are shown in the graph.

The graph represents a function because each domain value (\(x \)-value) is paired with exactly one range value (\(y \)-value). Notice that the graph is a straight line. A function whose graph forms a straight line is called a linear function.

EXAMPLE 1
Identifying a Linear Function by Its Graph

Identify whether each graph represents a function. Explain. If the graph does represent a function, is the function linear?

A

Each domain value is paired with exactly one range value. The graph forms a line.

linear function

B

Each domain value is paired with exactly one range value. The graph is not a line.

not a linear function

C

The only domain value, 3, is paired with many different range values.

not a function

CHECK IT OUT!
Identify whether each graph represents a function. Explain. If the graph does represent a function, is the function linear?

1a.

1b.

1c.
You can sometimes identify a linear function by looking at a table or a list of ordered pairs. In a linear function, a constant change in \(x\) corresponds to a constant change in \(y\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>7</td>
</tr>
<tr>
<td>-1</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>2</td>
<td>-5</td>
</tr>
</tbody>
</table>

In this table, a constant change of \(+1\) in \(x\) corresponds to a constant change of \(-3\) in \(y\). These points satisfy a linear function. The points from this table lie on a line.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>6</td>
</tr>
<tr>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

In this table, a constant change of \(+1\) in \(x\) does not correspond to a constant change in \(y\). These points do not satisfy a linear function. The points from this table do not lie on a line.

Example 2

Identifying a Linear Function by Using Ordered Pairs

Tell whether each set of ordered pairs satisfies a linear function. Explain.

A \(\{(2, 4), (5, 3), (8, 2), (11, 1)\}\)

Write the ordered pairs in a table. Look for a pattern.

- A constant change of \(+3\) in \(x\) corresponds to a constant change of \(-1\) in \(y\).

These points satisfy a linear function.

B \(\{(-10, 10), (-5, 4), (0, 2), (5, 0)\}\)

Write the ordered pairs in a table. Look for a pattern.

- A constant change of \(+5\) in \(x\) corresponds to different changes in \(y\).

These points do not satisfy a linear function.

2. Tell whether the set of ordered pairs \(\{(3, 5), (5, 4), (7, 3), (9, 2), (11, 1)\}\) satisfies a linear function. Explain.
Another way to determine whether a function is linear is to look at its equation. A function is linear if it is described by a **linear equation**. A **linear equation** is any equation that can be written in the **standard form** shown below.

Standard Form of a Linear Equation

$$Ax + By = C$$

where A, B, and C are real numbers and A and B are not both 0

Notice that when a linear equation is written in standard form

- x and y both have exponents of 1.
- x and y are not multiplied together.
- x and y do not appear in denominators, exponents, or radical signs.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Not Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x + 2y = 10$</td>
<td>Standard form</td>
</tr>
<tr>
<td>$y - 2 = 3x$</td>
<td>Can be written as $\frac{3x - y}{-2}$</td>
</tr>
<tr>
<td>$-y = 5x$</td>
<td>Can be written as $\frac{5x + y}{0}$</td>
</tr>
<tr>
<td>$3xy + x = 1$</td>
<td>x and y are multiplied.</td>
</tr>
<tr>
<td>$x^3 + y = -1$</td>
<td>x has an exponent other than 1.</td>
</tr>
<tr>
<td>$x + \frac{6}{y} = 12$</td>
<td>y is in a denominator.</td>
</tr>
</tbody>
</table>

For any two points, there is exactly one line that contains them both. This means you need only two ordered pairs to graph a line.

Example 3

Graphing Linear Functions

Tell whether each function is linear. If so, graph the function.

A

$y = x + 3$

Write the equation in standard form.

$$-x$$

Subtraction Property of Equality

$$\frac{y - x}{3}$$

$$-x + y = 3$$

The equation is in standard form ($A = -1$, $B = 1$, $C = 3$).

The equation can be written in standard form, so the function is linear.

To graph, choose three values of x, and use them to generate ordered pairs. (You only need two, but graphing three points is a good check.)

<table>
<thead>
<tr>
<th>x</th>
<th>$y = x + 3$</th>
<th>(x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$y = 0 + 3 = 3$</td>
<td>$(0, 3)$</td>
</tr>
<tr>
<td>1</td>
<td>$y = 1 + 3 = 4$</td>
<td>$(1, 4)$</td>
</tr>
<tr>
<td>2</td>
<td>$y = 2 + 3 = 5$</td>
<td>$(2, 5)$</td>
</tr>
</tbody>
</table>

B

$y = x^2$

This is not linear, because x has an exponent other than 1.

CAUTION

- $y - x = y + (-x)$
- $y + (-x) = -x + y$
- $-x = -1x$
- $y = 1y$
For linear functions whose graphs are not horizontal, the domain and range are all real numbers. However, in many real-world situations, the domain and range must be restricted. For example, some quantities cannot be negative, such as time.

Sometimes domain and range are restricted even further to a set of points. For example, a quantity such as number of people can only be whole numbers. When this happens, the graph is not actually connected because every point on the line is not a solution. However, you may see these graphs shown connected to indicate that the linear pattern, or trend, continues.

EXAMPLE 4

Career Application

Sue rents a manicure station in a salon and pays the salon owner $5.50 for each manicure she gives. The amount Sue pays each day is given by $f(x) = 5.50x$, where x is the number of manicures. Graph this function and give its domain and range.

Choose several values of x and make a table of ordered pairs.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = 5.50x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$f(0) = 5.50(0) = 0$</td>
</tr>
<tr>
<td>1</td>
<td>$f(1) = 5.50(1) = 5.50$</td>
</tr>
<tr>
<td>2</td>
<td>$f(2) = 5.50(2) = 11.00$</td>
</tr>
<tr>
<td>3</td>
<td>$f(3) = 5.50(3) = 16.50$</td>
</tr>
<tr>
<td>4</td>
<td>$f(4) = 5.50(4) = 22.00$</td>
</tr>
<tr>
<td>5</td>
<td>$f(5) = 5.50(5) = 27.50$</td>
</tr>
</tbody>
</table>

The number of manicures must be a whole number, so the domain is $\{0, 1, 2, 3, \ldots\}$. The range is $\{0, 5.50, 11.00, 16.50, \ldots\}$.

What if...? At another salon, Sue can rent a station for $10.00 per day plus $3.00 per manicure. The amount she would pay each day is given by $f(x) = 3x + 10$, where x is the number of manicures. Graph this function and give its domain and range.

THINK AND DISCUSS

1. Suppose you are given five ordered pairs that satisfy a function. When you graph them, four lie on a straight line, but the fifth does not. Is the function linear? Why or why not?

2. In Example 4, why is every point on the line not a solution?

3. **GET ORGANIZED** Copy and complete the graphic organizer. In each box, describe how to use the information to identify a linear function. Include an example.